Tau-isoform dependent enhancement of taxol mobility through microtubules.
نویسندگان
چکیده
Tau, a family of microtubule-associated proteins (MAPs), stabilizes microtubules (MTs) and regulates their dynamics. Tau isoforms regulate MT dynamic instability differently: 3-repeat tau is less effective than 4-repeat tau at suppressing the disassembly of MTs. Here, we report another tau-isoform-dependent phenomenon, revealed by fluorescence recovery after photobleaching measurements on a BODIPY-conjugated taxol bound to MTs. Saturating levels of recombinant full-length 3-repeat and 4-repeat tau both cause taxol mobility to be remarkably sensitive to taxol concentration. However, 3-repeat tau induces 2.5-fold faster recovery ( approximately 450s) at low taxol concentrations ( approximately 100 nM) than 4-repeat tau ( approximately 1000 s), indicating that 3-repeat tau decreases the probability of taxol rebinding to its site in the MT lumen. Finding no tau-induced change in the MT-binding affinity of taxol, we conclude that 3-repeat tau either competes for the taxol binding site with an affinity of approximately 1 microM or alters the MT structure so as to facilitate the passage of taxol through pores in the MT wall.
منابع مشابه
Tau isoform-specific modulation of kinesin-driven microtubule gliding rates and trajectories as determined with tau-stabilized microtubules.
We have utilized tau-assembled and tau-stabilized microtubules (MTs), in the absence of taxol, to investigate the effects of tau isoforms with three and four MT binding repeats upon kinesin-driven MT gliding. MTs were assembled in the presence of either 3-repeat tau (3R tau) or 4-repeat tau (4R tau) at tau:tubulin dimer molar ratios that approximate those found in neurons. MTs assembled with 3R...
متن کاملInfluence of taxol and CNTs on the stability analysis of protein microtubules
Microtubules are used as targets for anticancer drugs due to their crucial role in the process of mitosis. Recent studies show that carbon nanotubes (CNTs) can be classified as microtubule-stabilizing agents as they interact with protein microtubules (MTs), leading to interference in the mitosis process. CNTs hold a substantial promising application in cancer therapy in conjunction with other c...
متن کاملExpression and phosphorylation of a three-repeat isoform of tau in transfected non-neuronal cells.
The neuronal microtubule-associated protein, tau, is expressed as a set of isoforms containing either three or four tandemly repeated 31-amino-acid motifs in the C-terminal half of the molecule that can bind to microtubules. Three-repeat forms are the only ones expressed early in development. A single three-repeat isoform of tau has been stably expressed in non-neuronal cells which do not expre...
متن کاملTau induces cooperative Taxol binding to microtubules.
Taxol and tau are two ligands that stabilize the microtubule (MT) lattice. Taxol is an anti-mitotic drug that binds beta tubulin in the MT interior. Tau is a MT-associated protein that binds both alpha and beta tubulin on the MT exterior. Both Taxol and tau reduce MT dynamics and promote tubulin polymerization. Tau alone also acts to bundle, stiffen, and space MTs. A structural study recently s...
متن کاملMicrotubule depolymerization and tau phosphorylation.
Inge Grundke-Iqbal and Khalid Iqbal found a connection between microtubule associated tau and Alzheimer's disease. They described that abnormally phosphorylated tau is a component of the paired helical filaments found in the disease. Afterwards they described that tau hyperphosphorylation prevents microtubule assembly. Now trying to complement the relationship between microtubules and tau phosp...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Archives of biochemistry and biophysics
دوره 478 1 شماره
صفحات -
تاریخ انتشار 2008